Altabel Group's Blog

Archive for the ‘Development’ Category

 
Machine learning

A breakthrough in the technology of artificial intelligence and its active use in practice is the trend of the last two-three years. If earlier the creation of a high-quality machine translation system required a decade, now startups can offer consumers quite a competitive product in this area within one year.

Machine learning is a new approach to information processing, it turns the machine into an intelligent device very fast. In many ways, the development boom based on machine learning programs happened due to the fact that almost everything you need can be found among free software. It is enough to download the development environment, a number of libraries and read the manual. For a week or two, you can write, for example, a program recognizing wine labels or even individuals.

AI opened a completely new universe that humanity will explore for centuries. This means that robots are getting smarter and can learn independently. They are even capable of transmitting their knowledge to each other. To do this, of course, communication infrastructure is necessary. With its help, the program, which has recently invented a new universal language, could teach the other machines.

By the way, people did not expect artificial intelligence to create a new language, it was a by-product performed while teaching machines to translate from different languages. The program has learned how to translate from the languages it hadn’t been asked to by itself. Hence, the researchers concluded that a computer system uses meta-level language for communication, a new sort of Esperanto, a universal language.

 
Robots and VR
 

Analytical agencies called 2016 the year of virtual reality technologies. According to the Digi Capital forecast, by 2020 the virtual reality market will come up to $ 30 billion. Today we have every reason to believe that in 2017 VR-technology will finally become mass.

This trend has affected robotics as well. Complex machine control via VR-helmets and screens shows that augmented reality is gaining popularity. At MWC in Barcelona 2016, all visitors were offered to try themselves as excavator operators, controlling real excavators via Oculus Rift helmet.

This is one of the main scenarios of applying VR in industry and business, which will be used in a variety of situations: unmanned vehicles control (trailers, drones, trucks), surgical operations, exploring out of reach places (the ocean bottom, mines, permafrost). However, the automation trend of the last decade is increasing in order to completely avoid people’s participation in these processes.

 
Artificial Intelligence
 

The idea of intelligent robots has been exciting minds for a long time. We are used to different fiction anthropomorphic golems, androids, perfect voice assistants. Moreover, the success of HBO Westworld recent show demonstrates that the interest in artificial intelligence is rapidly increasing.

Meanwhile, the representatives of different professions were asked to imagine AI as a professional assistant at work or even in the role of a leader. Intelligent Apps have the potential to transform the workplace by making everyday tasks easier and its users more effective. The prospect of getting help from the robot frightens 25% of people, 40% are against the robot leader. However, the majority of people can easily imagine robots among their colleagues- 35% want to see a robot as a personal assistant. Every fourth looks positive on robots to take a leading position.

 
Internet of Things

The internet of Things has been labeled as “the next Industrial Revolution” because of the way it will change the way people live, work, have fun and travel, as well as how governments and businesses interact with the world.

Most of us are used to applications, which allow us to switch tracks on the audio system, to open our cars, turn on the lights, change the temperature in the room. According to Ericsson ConsumerLab research, two out of five people expect applications to remember users’ preferences and configure home appliances in the nearest future. It is as a good way to save personal time that can be spent on tasks that are more important.

 
Unmanned vehicles
 

They can either be remote controlled or remote guided, or they can be autonomous vehicles which are capable of exploring the environment and navigating on their own. With the right technology, multiple cars could “talk” to one another and reduce the chance for crashes.

Every fourth interviewee said he would feel safer if all the cars would be driven by robots. Meanwhile, 65% said they would prefer to have an autonomous vehicle rather than drive themselves.

Self-driven cars – futuristic, comfortable and safe. However, at the moment none of the existing systems can completely take over driving. Even the most sophisticated systems can fail.

 
Augmented reality
 

Approximately four out of five users believe that a complete blending of real and virtual worlds will happen just within three years. Half of the respondents are already interested in buying special gloves or shoes that would control VR-objects (for example, for playing virtual instruments).

A well-known game Pokemon GO is a good example to demonstrate the real potential of augmented reality. Many people want to use similar possibilities not only in the games but in real life as well. More than half of users would like to have AR-glasses to see better in the dark and, for example, to be able to observe criminals. One out of three would like to use augmented reality to get rid of unpleasant elements of their landscape, such as graffiti and litter. Many people dream of not seeing street signs, uninteresting shop windows and billboards.

 
Security Paradox of “smart” devices
 

More than half of the respondents use applications and trackers that transmit alarm and danger warnings. Using such apps people expect to increase their personal safety level. The paradox is that 60% of those who feel more secure with a smartphone admit that would try to avoid those situations while not having a phone in the pocket. People rely on their smartphones capabilities too much. Meanwhile, they won’t know what to do if they lose the device or the battery dies. Three out of five people, who believe that the smartphone makes their lives safer, are in a bigger danger.

 
Social fragmentation
 

For every third respondent social networks have become a main source of information. However, social networks do not connect people from all around the world, on the contrary, they form small groups and communities. There is a chance that this fragmentation will only increase: every week, every day individuals exclude each other from friends or refuse to accept connection requests based on the opinions of other people.
 
We all know that making predictions about the course of technology’s future is challenging. Surprises can appear in any direction. Now we can only imagine those amazing opportunities we are going to explore in the nearest future.

Feel free to share your thoughts about technology prospects for the near future in comments below!

 

Darya Bertosh

Darya Bertosh

Business Development Manager

E-mail: darya.bertosh@altabel.com
Skype: darya.bertosh
LI Profile: Darya Bertosh

 

altabel

Altabel Group

Professional Software Development

E-mail: contact@altabel.com
www.altabel.com

Internet of Things(IoT) is extremely broad phrase, and can mean a great many different things. But it does not change the fact that each day more and more devices all over the world are being connected to the Internet. At that rate, Internet of Things (IoT) development projects are gaining popularity to say the least.

It is definitely the trend. This brings up a question: what programming languages are the most popular for IoT project? Well, according to the Eclipse Foundation survey, Java, JavaScript, C, and Python are the top four programming choices for developers who are building IoT solutions. Let’s look into them!

Java

Though some people question the use of Java in IoT it is not surprising to see Java as being the most popular among developers who are working on IoT solutions. The practicality of the statement “write once, run anywhere” still predetermines the choice in a great measure.

Java advantages are apparent. It is an object-oriented and platform independent language. Thus coding and debugging can be done on desktop and moved to any chip with a Java Virtual Machine afterwards. Therefore code can be run not only on places where JVMs are common (servers and smartphones), but also on the smallest machines. Minimum hardware dependency is a huge plus. This also means that Java is great from an economic standpoint: devotion to Java coding can pay back across various platforms.

Besides, by now Java has attracted an active community of millions software developers and is being taught as one of the primary programming languages in the majority of engineering degree programs. Consequently, finding someone skilled in Java programming should not constitute a problem.

Last but not the least, maturity and stability of this language make it even more attractive. When there are devices that are going to be remotely managed and provisioned for a long period of time, Java’s stability and care about backwards compatibility become important.

It should be taken into consideration thought that your choice of IoT platform should support Java. You should make sure available hardware support libraries should have control functions according to your requirements too.

Javascript

Combining some knowledge from other languages JavaScript has not only proven itself worthy on both the client and server side of the web, but it also has a huge potential in the growing Internet of Things domain.

The main difference between Javascript and Java is that JavaScript is a scripting language that has a range of existing libraries, plugins, and APIs, and many of them can be used to create complicated IoT apps easier and faster. Instead of building a range of new libraries and plugins, developers are free to reuse and further develop existing solutions around the web for absolutely new implementations.

Remarkably, applications that listen for events and respond when events occur are a strength of a JavaScript. Effective and secure communications and interactivity are of paramount importance in the IoT, and there are great systems for dealing with requests and events. For example, Socket.io maintains an open connection between the server and the browser and thus enables the server to push updates to the browser as they happen. This gives you a chance to see the changes in the IoT network without a page refresh. By providing real time event based communication across multiple devices Socket.io really comes in handy.

Additionally, much of the Internet is built on JavaScript and huge portion of the web functionality is enabled through JavaScript. Connecting up the web to our IoT devices and using the language that web pages and web apps already speak lead to simplicity in management.

It’s important to mention however, that Javascript would be a bad choice for lightweight embedded controllers.


C

Created to program the telephone switches C programming language has almost monopolized embedded systems programming. Its proximity to machine language makes it impressively fast.

C can create compact and faster runtime code. Still it should be noted that runtime speed isn’t the primary aspect of development to consider. Development speed should also be takes into account (and other languages may be much more efficient in that).

Another vote for stems from the fact that majority of the modern languages follow the syntax of C, which means that it is easy to learn and effective in accomplishing advanced tasks.

As both completing complex tasks and finding developers with extensive experience in C is relatively easy, its applicability to IoT projects speaks for itself.

Still, there are some drawbacks of C that make it less preferred in today’s development world, e.g. poor data security and no run time checking mechanism.

Python

Although Python originally is widely chosen for Web development, it has significantly gained popularity in the IoT coding arena for the past few years. Such huge advantages as its flexibility, writability, error reduction, and readability contributed to that greatly. Distribution of compact executable code is easy. Working in programming teams is easy. Known as organized and neat, its elegant syntax is great for database arrangement. Sure, Python is a good choice for building applications that take data, convert it into any sort of a database format and draw upon the tables for control information. Python also has libraries for all 3 main IoT protocols such as TCP/IP, Bluetooth and NFC.

Additionally, IoT projects involve lots of data analytics and Python has rich modules for that.

Finally, major IoT hardware platforms and micro-controllers, e.g. Arduino, Raspberry PI, Intel Galileo, are enabled for interactive communication through Python.

Probably, the main problem for Python is its runtime speed, especially in comparison to C. Still there is a number of ways to optimize the code so it runs more efficiently.

Steady increase in popularity of Python for IoT is evident.

So which programming language is the best for IoT?

No definite answer, guys… All the above languages influence the IoT space up to an extent. However, the preference of language today depends on the end use of the app, product or service you want to create. What do you think? I’d love to hear your thoughts in the comments!

 

alexandra-presniatsova

Alexandra Presniatsova

Business Development Manager

E-mail: Alex.Presniatsova@altabel.com
Skype: alex.presniatsova
LI Profile: Alexandra Presniatsova

 

altabel

Altabel Group

Professional Software Development

E-mail: contact@altabel.com
www.altabel.com

We see this “Is Java out of business?” question pop up year after year. They say that Java is the least feature-rich language of the popular languages on the JVM and the slowest to move on new features in the last decade. There are also people who believe that because so many new JVM languages are being invented is proof that the Java language is lacking and that Java is no longer meeting the needs of many developers. And yet, by all external markers, Java is alive, well, and growing.

Here are several proofs for it:

1. TIOBE ranked Java as its top language of 2015 currently shows it enjoying 5% growth in use since 2014, more than any other programming language.

2. RedMonk has recently published the latest edition of its bi-annual list of the top programming languages. Compiled with the help of data obtained from GitHub and StackOverflow, this list tells us about the usage and discussion of a language on the web. Just like the previous years Java is among the top of the programming languages.

3. Further, the PYPL Index, which ranks languages based on how often language tutorials are searched on Google, shows Java clearly out in front with 23.9% of the total search volume.

Since Java first appeared it has gained enormous popularity. Its rapid ascension and wide acceptance can be traced to its design and programming features, particularly in its promise that you can write a program once, and run it anywhere. Java was chosen as the programming language for network computers (NC) and has been perceived as a universal front end for the enterprise database. As stated in Java language white paper by Sun Microsystems: “Java is a simple, object-oriented, distributed, interpreted, robust, secure, architecture neutral, portable, multithreaded, and dynamic.”

So here are the most common and significant advantages of Java that helped it to take its high position in a quite competitive environment of programming languages:

  • Java is easy to learn.
    Java was designed to be easy to use and is therefore easy to write, compile, debug, and learn than other programming languages.
  • Java is platform-independent.
    One of the most significant advantages of Java is its ability to move easily from one computer system to another. The ability to run the same program on many different systems is crucial to World Wide Web software, and Java succeeds at this by being platform-independent at both the source and binary levels.
  • Java is secure.
    Java considers security as part of its design. The Java language, compiler, interpreter, and runtime environment were each developed with security in mind.
  • Java is robust.
    Robust means reliability. Java puts a lot of emphasis on early checking for possible errors, as Java compilers are able to detect many problems that would first show up during execution time in other languages.
  • Java is multithreaded.
    Multithreaded is the capability for a program to perform several tasks simultaneously within a program. In Java, multithreaded programming has been smoothly integrated into it, while in other languages, operating system-specific procedures have to be called in order to enable multithreading.

Nonetheless things changed since the time when Java was created. In the recent years, many important languages have appeared and left an impact on the technology world. Due to their simplicity and user-friendliness, they have managed to surpass the more established languages. So we tried to make a list of reasons why Java is going to stay on the grind in the nearest future:

1. Java is time-proved.
You generally need a strong reason to switch from a language you’re currently using: it requires time to practice and learn new languages, and you have to be confident that the language you’re considering switching to will be supported in the long term. Nobody wants to build software in a language that will be obsolete in five years’ time.

2. JVM and the Java Ecosystem.
The Java Virtual Machine, or JVM. compiles programs into bytecode, which is then interpreted and run by the JVM. Because the JVM sits above your specific hardware and OS, it allows Java to be run on anything, a Windows machine, a Mac, or an obscure some flavor of Linux.

The big advantage granted by the JVM is in this increased compatibility and the stability it affords. Because your application runs in the VM instead of directly on your hardware, you can program said application once and trust that it is executable on every device with a Java VM implementation. This principle is the basis for Java’s core messaging: “Write once, run everywhere.” And it makes Java applications very resilient to underlying changes in the environment.

3. Java and the Internet of Things.
“I really think Java’s future is in IoT. I’d like to see Oracle and partners focused on a complete end-to-end storage solution for Java, from devices through gateways to enterprise back-ends. Building that story and making a success of it will help cement the next 20 years for Java. Not only is that a massive opportunity for the industry, but also one I think Java can do quite well,” said Mike Milinkovich, Executive Director of the Eclipse Foundation.

Oracle agrees. Per VP of Development Georges Saab, “Java is an excellent tech for IoT. Many of the challenges in IoT are many of the challenges of desktop and client Java helped address in the 1990s. You have many different hardware environments out there. You want to have your developers look at any part of the system, understand it and move on. Java is one of the few technologies out there that lets you do that.”
 
Thus, Java might have its detractors, and some of their arguments might even be reasonable. Nonetheless Java has evolved a lot since its inception, holds the lead in many areas of software development and has more prospects for the future. So, in our opinion, its survivability is not in doubt.

And what do you think? Is Java going to become one of the dead languages? Or it has all chances to survive? Feel free to share your thoughts in comments below!

 

yana-khaidukova

Yana Khaidukova

Business Development Manager

E-mail: yana.khaidukova@altabel.com
Skype: yana_altabel
LI Profile: Yana Khaidukova

 

altabel

Altabel Group

Professional Software Development

E-mail: contact@altabel.com
www.altabel.com

Introducing ASP.NET Core:

ASP.NET Core is a new open-source and cross-platform framework for building modern cloud based internet connected applications, such as web apps, IoT apps and mobile backends. ASP.NET Core apps can run on .NET Core or on the full .NET Framework. It was architected to provide an optimized development framework for apps that are deployed to the cloud or run on-premises. It consists of modular components with minimal overhead, so you retain flexibility while constructing your solutions. You can develop and run your ASP.NET Core apps cross-platform on Windows, Mac and Linux. ASP.NET Core is open source at GitHub.

The framework is a complete rewrite that unites the previously separate ASP.NET MVC and Web API into a single programming model.

Despite being a new framework, built on a new web stack, it does have a high degree of concept compatibility with ASP.NET MVC.

ASP.NET Platform exists for more than 15 years. In addition, at the time of System.Web creation it contained a large amount of code to support backward compatibility with classic ASP. During this time, the platform has accumulated a sufficient amount of code that is simply no longer needed and is deprecated. Microsoft faced a difficult choice: to abandon backward compatibility, or to announce a new platform. They chose the second option. At the same time, they would have to abandon the existing runtime. Microsoft has always been a company focused on creation and launch on Windows. ASP.NET was no exception. Now the situation has changed: Azure and Linux occupied an important place in the company’s strategy.

The ASP.NET Core is poised to replace ASP.NET in its current form. So should you switch to ASP.NET Core now?

ASP.NET Core is not just a new version. It is a completely new platform, the change of epochs. Switching to ASP.NET Core can bring many benefits: compact code, better performance and scalability. But what price will be paid in return, how much code will have to be rewritten?

.NET Core contains many components, which we are used to deal with. Forget System.Web, Web Forms, Transaction Scope, WPF, Win Forms. They no longer exist. For simple ASP.NET MVC-applications changes will be minor and the migration will be simple. For more complex applications, which use a great number of .NET Framework classes and ASP.NET pipeline situation is more complicated. Something may work and something may not. Some part of the code will have to be rewritten from scratch. Additional problems may be caused by WebApi, because ASP.NET MVC subsystems and WebAPI are now combined. Many libraries and nuget-packages are not ready yet. So, some applications simply will not have a chance to migrate until new versions of the libraries appear.

I think we are waiting for the situation similar to the transition from Web Forms to ASP.NET MVC. ASP.NET Framework will be supported for a long time. First, only a small amount of applications will be developed on ASP.NET Core. Their number will increase, but sooner or later everyone will want to move to ASP.NET Core. We still have many applications running on the Web Forms. However, no one comes to mind to develop a new application on the Web Forms now, everybody chooses MVC. Soon the same happens to ASP.NET Framework, and ASP.NET Core. ASP.NET Core offers more opportunities to meet modern design standards.

The following characteristics best define .NET Core:

  • Flexible deployment: Can be included in your app or installed side-by-side user- or machine-wide.
  • Cross-platform: Runs on Windows, macOS and Linux; can be ported to other OSes (Operating Systems). The supported OSes, CPUs and application scenarios will grow over time, provided by Microsoft, other companies, and individuals.Command-line tools: All product scenarios can be exercised at the command-line.
  • Compatible: .NET Core is compatible with .NET Framework, Xamarin and Mono, via the .NET Standard Library.
  • Open source: The .NET Core platform is open source, using MIT and Apache 2 licenses. Documentation is licensed under CC-BY. .NET Core is a .NET Foundation project.
  • Supported by Microsoft: .NET Core is supported by Microsoft, per .NET Core Support.

The Bad:

  • As for the “cons” one of the biggest issues are gaps in the documentation. Fortunately most of the things for creating and API are covered, but when you’re building an MVC app, you might have problems.
  • Next problem – changes. Even if you find a solution to your problem, it could have been written for a previous version and might not work in the current one. Thanks to open source nature of it, there is also support available on github. But you get same problems there (apart from searching).
  • Another thing is lack of support in the tooling. You can forget about NCrunch or R# Test Runner. Both companies say they will get to it when it gets more stable.
  • ASP.NET Core is still too raw. Many basic things, such as the Data Access, is not designed for 100%. There is no guarantee that the code you are using now will work in the release version.

The Good:

  • It’s modular. You can add and remove features as you need them by managing NuGet packages.
  • It’s also much easier and straightforward to set up.
  • WebApi is now part of the MVC, so you can have class UserController, which will return a view, but also provide a JSON API.
  • It’s cross-platform.
  • It’s open-source.

ASP.NET Core is the work on the bugs of the classic ASP.NET MVC, the ability to start with a clean slate. In addition, Microsoft also aims to become as popular as Ruby and NodeJS among younger developers.
NodeJS and ASP.NET have always been rivals: both – a platform for backend. But in fact, between them, of course, there was no struggle. The new generation of developers, the so-called hipster developers, prefer Ruby and Node. The adult generation, people from the corporate environment, are on the side of .NET and Java. .NET Core is clearly trying to be more youthful, fashionable and popular. So, in future we can expect the .NET Core and NodeJS to be in opposition.

In its advertising campaign, Microsoft is betting on unusual positions for it: high performance, scalability, cross-platform. Do you think that ASP.NET “crawls” on the territory of NodeJS? Please feel free to share your thoughts with us.

Thank you in advance!

Ref: MICHAL DYMEL – DEVBLOG

 

Darya Bertosh

Darya Bertosh

Business Development Manager

E-mail: darya.bertosh@altabel.com
Skype: darya.bertosh
LI Profile: Darya Bertosh

 

altabel

Altabel Group

Professional Software Development

E-mail: contact@altabel.com
www.altabel.com

 

“Computer programming is an art, because it applies accumulated knowledge to the world, because it requires skill and ingenuity, and especially because it produces objects of beauty.”
Donald Knuth, 1974

 

It’s better to start your journey into the career of programming by answering the question “Do you really need programming?” This question does not apply to those, who majored in computer programming or was close to it. If at school you were good at math, if you like to spend a lot of time sitting in front of the computer, if you want to learn something new, then programming is for you. What is more, this area is now in demand and highly paid in the world, job vacancies for the post of programmers are always open. Isn’t it the best time to be a programmer? 🙂

Everyone knows that the future programmer should be able to think broadly and to present the project from different perspectives before its implementation and realization. Unfortunately, the machine does not understand a human language. Of course, I’m not talking about Siri and other voice recognition — I’m talking about the creation of new software. To create the calculator, the computer needs to be given the task in the same way as the foreman explains to workers how to lay bricks. That’s why you can’t do anything without understanding the programming languages. Well, first you need to decide what kind of programming languages we should start with.

And here everyone chooses a language which will be useful for him. It depends on the kind of products you are going to develop. Most of us studied Turbo Pascal at school, and it’s no news that this language is practically not used anymore. So, if you want to join the team of programmers in the nearest future, the choice of language should be made sensibly.

Among the most popular programming languages in 2016 are Java, followed by C languages, then Python, JavaScript, PHP, Ruby, etc. It should come as no surprise that the more popular language is, the more chances you have to find work in the future. So, you’d better start with Java or C#, as these are the best paid and relatively simple learning languages of writing code. If you can’t cope with them, then you should try to learn Python. This language suits for quick and effective programming.

But if you have no programming experience at all you can start with something more simple for understanding. Good examples can be the basics of HTML and CSS.

Why? These two languages are essential for creating static web pages. HTML (Hypertext Markup Language) structures all the text, links, and other content you see on a website. CSS is the language that makes a web page look the way it does—color, layout, and other visuals we call style. Well, if you are interested in making websites, you should definitely start with HTML and CSS.

Let’s move to JavaScript. It is the first full programming language for many people. Why? It is the next logical step after learning HTML and CSS. JavaScript provides the behavior portion of a website. For example, when you see that a form field indicates an error, that’s probably JavaScript at work.

JavaScript has become increasingly popular, and it now lives outside web browsers as well. Learning JavaScript will put you in a good place as it becomes a more general-purpose language.

Some people also suggest choosing Python as the first programming language because Python’s program code is readable, first of all. You don’t even need to be a programmer to understand what is happening in the program. Due to the simple syntax of Python you will need less time for writing programs than in Java, for example. A huge base of libraries will save you a lot of strength, nerves and time. Large technology companies are working with Python: Yandex, Google, Facebook and YouTube. It is used for web applications, game development, software for servers.

Java can also be a good choice for a beginner. This language is more popular than Python, but a bit more complicated. At the same time, the development tools are much better designed. Java is one of the most popular languages for the backend development of modern enterprise web applications. It is used in Amazon, eBay, LinkedIn and Yahoo! With Java and the frameworks based on it, developers can create scaling web apps for a wide range of users. Java is also the primary language used for developing Android applications for smart phones and tablets. Moreover, after Java you will be able to work with low level programming languages.

PHP is one more popular language. The PHP language, along with databases (e.g. MySQL) is an important tool for creating modern web applications. Most of the sites developed on PHP are focused on a large amount of data. It is also a fundamental technology of powerful content management systems like WordPress. There are no normal imports in PHP, there are many solutions to one and the same problem. And it makes training more complicated.

 

 
The languages C and C# are a bit complicated for a beginner. But if you develop software for embedded systems, work with system kernels or just want to squeeze out every last drop from all available resources, C is what you need.

Ruby has begun to gain popularity since 2003, when the framework Rails appeared. Used widely among web startups and big companies alike, Ruby and Rails jobs are pretty easy to come by. Ruby and Rails make it easy to transform an idea into a working application, and they have been used to bring us Twitter, GitHub, and Treehouse.

Choosing a programming language may still seem challenging. It shouldn’t. You can’t go wrong. As long as you choose a language that is regularly used in technology today, you’re winning. When you are starting out, the goal is to become solid in the basics, and the basics are pretty similar across almost all modern programming languages.

Part of learning to code is learning a language’s syntax (its grammatical or structural rules). A much bigger part of learning to code, the part that takes longer and gives you more headaches, is learning to solve problems like a programmer. You can learn the grammatical structure of the English language pretty quickly; however, you won’t truly understand the language until you put that grammatical structure to use in a conversation. The same is true in programming. You want to learn the core concepts in order to solve problems. Doing this in one language is similar to doing it in another. Because the core concepts are similar from language to language, I recommend sticking with whichever language you choose until your understanding of the core concepts is solid. If you have a clear idea of your reasons for learning to program, and know exactly what you want to accomplish with your new coding skills, then you’ll be able to make the right choice.

How did you guys get into programming? What are the best programming languages for first-time learners?

Please, share with us your experience and opinion here below 🙂

 

Kate Kviatkovskaya

Kate Kviatkovskaya

Business Development Manager

E-mail: Kate.Kviatkovskaya@altabel.com
Skype: kate.kviatkovskaya
LI Profile: Kate Kviatkovskaya

 

altabel

Altabel Group

Professional Software Development

E-mail: contact@altabel.com
www.altabel.com

Programming cells may soon become as easy as programming a computer. Just as computer software designers create programming for computers, scientists have created a programming language that allows them to design DNA-encoded circuits that can give new function to living cells.

Using this language, anyone can write a program for the function they want, such as detecting and responding to certain environmental conditions. They can then generate a DNA sequence that will achieve it.

“It is literally a programming language for bacteria,” says Christopher Voigt, an MIT professor of biological engineering. “You use a text-based language, just like you’re programming a computer. Then you take that text and you compile it and it turns it into a DNA sequence that you put into the cell, and the circuit runs inside the cell.”

In the new software — called Cello — a user first specifies the kind of cell they are using and what they want it to do: for example, sense metabolic conditions in the gut and produce a drug in response. They type in commands to explain how these inputs and outputs should be logically connected, using a computing language called Verilog that electrical engineers have long relied on to design silicon circuits. Finally, Cello translates this information to design a DNA sequence that, when put into a cell, will execute the demands.

dna

The good thing about it is that it’s very simple, without many of the intricacies often encountered in programming.

“You could be completely naive as to how any of it works. That’s what’s really different about this,” Voigt says. “You could be a student in high school and go onto the Web-based server and type out the program you want, and it spits back the DNA sequence.”

For now, all these features have been customized for the E. coli bacteria, one of the most common in studies, but researchers are working on expanding the language to other strands of bacteria.

Using this language, they’ve already programmed 60 circuits with different functions, and 45 of them worked correctly the first time they were tested – which is a remarkable achievement. The circuits were also strikingly fast, and the whole process promises to revolutionize DNA engineering. Before, it could take months or years to design such a circuit. Now, it can be done in less than a day.

Dr. Voigt’s team plans to work on several different applications using this approach — bacteria that can be swallowed to aid in digestion of lactose; bacteria that can live on plant roots and produce insecticide if they sense the plant is under attack; and yeast that can be engineered to shut off when they are producing too many toxic byproducts in a fermentation reactor.

What do you think about this rapidly developing revolutionary computer industry? Can it replace drugs and medicine in future? Can it help to cure cancer and AIDS? Will it make a living cell immortal?

Please feel free to share with us your opinion and thoughts here below.

 

Kate Kviatkovskaya

Kate Kviatkovskaya

Business Development Manager

E-mail: Kate.Kviatkovskaya@altabel.com
Skype: kate.kviatkovskaya
LI Profile: Kate Kviatkovskaya

 

altabel

Altabel Group

Professional Software Development

E-mail: contact@altabel.com
www.altabel.com

Java brings a lot of popular and user-friendly frameworks, content management systems and servers that help to simplify the application development process, website management process and much more irrespective of the size and complexity of the project. When it comes to CMS, Java possesses a host of CMSs that have been highly recognized in the market, but one CMS that has gained great popularity and attention from the developers and companies across the world is Magnolia.

Magnolia is an open source content management system which delivers exceptional simplicity on an enterprise level, combining user-friendly usage with a standards-based and flexible Java architecture. Companies such as Airbus Group, Al Arabiya, Avis and Virgin America use it as the central hub for their web, mobile and IoT initiatives. Founded in 1997, Magnolia is a privately-held company headquartered in Basel, Switzerland. The company has offices around the globe, and customers in over 100 countries.

Making a good CMS to cater the needs of the clients is never an easy task, and the developers Magnolia knows this thing better. Hence, Magnolia brings some of the much needed features and functionalities for the enterprises.

• Magnolia comes with a smart cache, a built-in clustering capabiliy and distributed deployment architecture that easily decouples authoring from publishing and the possibility to develop load-balanced public servers to bring more throughput and availability.
• It also offer code highlighting for the designers & developers, easy integration of 3rd party frameworks, extendable workflow, J2EE compliance, RSS generation & aggregation and more for the customization.
• When it comes to designing, it brings standard-based templating in JSP and servlets, unlimited page and component design, Freemarker as a template engine, custom tag library to speed up templating and pluggable templating engine for the designers.
• It brings Open APIs, advanced caching strategies, unlimited scalability, clustering & load balancing, transactional activation and tons of other performance related features & functionalities for the enterprises.
• From the security point of view, Magnolia brings flexible user permissions using role-based user management and distributed architecture, which is a need of today’s enterprises.
• It also enables team work through concurrent editing, deletion, address book, workgroup collaboration and some other features.
Apart from all these, Magnolia also enables search engine optimization, content tagging, configurable workflow, content versioning, social media integration, multilingual support, multi-site management, mobile publishing and tons of other enterprise-scale functionalities.

magnolia

However, like any other technology or platform, Magnolia also has some advantages and disadvantages. Let’s take a look at each of them:

The Pros
• It’s an open source.
• User friendly, easy to use for Administrators/Content Editors/Authors
• Good set of standard components in the standard templating kit (STK)
• Very flexible, almost anything can be customized
• Vast set of open modules for many additional features
• Leverage from page-based site or navigation.
• It utilizes installer, but the WAR files can be used to redeploy it to some other place.

The Cons
• Steep learning curve
• Inconsistent or lack of documentation
• Configuration via JCR-Tree can be error-prone and not very transparent
• Versions -4.5, 4.5+ and 5 all have shifts in paradigms
• Versioning and collaboration

All in all, Magnolia is a very promising CMS that integrates well into an enterprise java stack. It is predominantly suited for medium to large businesses where processes need deep integration and customizations. With regards to small businesses, Magnolia might be somewhat of an overkill.

How about you? Did you have a chance to work with Magnolia CMS? What is your attitude to it?

Please feel free to share with us your thoughts and experience here below.

 

Kate Kviatkovskaya

Kate Kviatkovskaya

Business Development Manager

E-mail: Kate.Kviatkovskaya@altabel.com
Skype: kate.kviatkovskaya
LI Profile: Kate Kviatkovskaya

 

altabel

Altabel Group

Professional Software Development

E-mail: contact@altabel.com
www.altabel.com


%d bloggers like this: